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A mathematical description is given of the stochastic nature of the
process of transfer of material from one reactor to another in multi-
stage air-counterflow equipment. A modeling technique has been
developed for experimental determination of the basic characteristics
of the process.

One of the basic features of multistage air-counter-
flow equipment {1-3] is the stochastic nature of the
residence time of the material being processed in the
reactors. There are certain characteristics of this
random process which permit the relationship between
the main thermal and design parameters of such equip-
ment to be uniquely established. In fact, it is possible
to choose these parameters in such a way as to secure
reliable, stable operation—in the thermal and hydro-
dynamic sense--and to attain the required degree of
processing of the material.

Analysis of various regimes of operation of air-
counterflow systems indicates that the most effective
technique is to use dispersed streams, intermediate
between fluids and gas suspensions [1].

The physical nature of the effect involved in this
process is as follows.

In the axial part of the stream, near the throat, the
aerodynamic force acting on a particle is decisive and
therefore in this part of the diffuser the particle ac-
quires a velocity which coincides in direction with
the stream velocity. At a certain height, however, the
weight of the particle begins to predominate, and the
motion of the particle is slowed down. In the converg-
ing section the aerodynamic force of the stream again
increases, and, at a certain critical level the re-
sultant force is again directed upwards. If the particle
attains the critical level, then it is carried over from
the reactor in question to the previous one. If the
vertical component of the particle velocity becomes
equal to zero below the critical level, the lateral
turbulent fluctuations throw the particle into the pe-
ripheral, low-velocity part of the stream, where the
main process is a fall under gravity until the particles
enter, the throat region. It may then happenthat, because
of the turhulent fluctuations of gas velocity in the throat
region, the aerodynamic resistance of the stream can-
not slow the particle down, and it passes into the next
reactor. Otherwise the whole cycle is repeated.

We will examine an equipment consisting in the
general case of n reactors (sec figure).

Assuming that we are operating with a polyfrac-
tional material, we will describe a particle fraction
by its weight g (or by the diameter d of the equivalent
sphere) and introduce the function fy(q, t) to determine
the quantity (weight) and the polyfractional particle
distribution in the k-th reactor.

To be exact, fix(q, t)Aq is the number of particles
with weight in the range from q to q + Aq located at
time t in the reactor in question.

N

{

Diagram of air-counterflow equipment: 1) raw

material input; 2) flue gas outlet; 3) working

reactors; 4) burners; 5) finished product out-
put; 6) air supply.

If we neglect the transformations which the particles
undergo during processing in the reactor, we may
obtain the following expression for the rate of change
of the function fi(q, t):
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We assume that the average number of particles, of
weight q, entering the (k + 1)-threactor (ejected into
the (k — 1)-th reactor) during an infinitely small time
At is proportional to this time and to the current
value of fx(q, t).

In other words, the product ai(q)At{ck(Q)At) gives
the probability of escape of a particle ¢ into the

( + 1)-th reactor (ejection into the (k — 1)-th reactor)
during the infinitely small time Ot.

Neglecting the ejection of particles into the preced-
ing rcactors (when the motion is directed this effect
is insignificant), we obtain the following relations for
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the passage of particles from reactor to reactor:
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where gyfj(q, t) = Fy(q, t) determines the fractional
charge distribution.
Assuming that with t =0, fk(q,0)=0 k=1,2,...,n),
the solution of Eq. (2) will be
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In the special case when the loading of materials
into the equipment is intermittent (Fy(q, t) = F*(q)d (t)),
the solution (3) takes the form
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For a steady regime with a constant input rate we
have

fe@ =Fo@Ve,, k=1,2, ..., n (5)

The quantities examined allow a quite simple deter-
mination of a number of parameters describing air-
counterflow systems.

With the help of these quantities, we may determine
limits of variation of the raw material input rate that
permit stable operation of the equipment (depending
on the flow rate capacity of the throats). Thus, in
the case of steady operation of the equipment, it is
easy fo obtain
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Here, p= \ 4ix(9)dgipgV, is the volume concen-
Y
tration of solids in the reactor, which usually charac-
terizes the various regimes of operation of systems
with through disperse streams [1]; and o{qg) is the
fractional distribution of the charge material.
It follows from Eq. (1) that the probability density
of the stochastic quantity—the residence time of
particles in the reactors—is equal to

P (7)) = apexp(—a,1). (6)
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Hence, in particular, we obtain the result that the
quantities g are inversely proportional to the mean
particle residence time in the reactor, since
T 1
m=[Tpdr=
0
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Using Eq. (5), Eq. (6) may be transformed to the
form
Fy T) ,
f

i.e., in the particular case when there is steady
operation of the equipment and the values fj. are known,
Eq. (6) coincides with the expression for probability
density of the dwell time of particles in the reactors,
as obtained in fluidization and suspended state theory
[4—6].

In a number of cases, knowledge of the function (6)
allows us to determine all the changes which the ma-
terial undergoes during processing, i.e., to describe
the system completely [6].

The equipment examined is designed for heat treat-
ment of the raw material. The determination of the
temperature to which the particles are heated reduces
to integration of the usual equation of external heat
transfer (the processing of particles in the heating of
which internal thermal resistance plays a substantial
part is scarcely efficient in the equipment examined):
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One possible means of taking account of the sto-
chastic nature of the residence time is to apply Monte
Carlo methods [7].

By replacing Eq. (8) by its finite-difference analog,
and using the @k characteristics, we may determine
at each time step whether a particle under examination
has left the reactor or not. In fact, by using a com-
puter to solve this problem and obtaining, by some
means or other, a sequence of pseudo-random numbers
¥y, uniformly distributed in the range (0, 1), we
calculate that a particle will leave a reactor, if
0 < ¥n < g Af, and will remain in it, if @At < v, <L

This process allows us to track a particle up to
the time that it leaves the equipment and to determine
the temperature that it acquires.

The temperature to which the particles have been
heated allows us to assess what physical and chemical
transformations have occurred in the material being
processed, and, therefore, to assess the quality of
the process.

By repeating this kind of process many times and by
taking the arithmetic mean, we may obtain the math-
ematical expectation (the mean) of the desired quan-
tities, as well as the variance and other probability
characteristics.

The quantities ax may be determined quite simply
by experiments on models. The experiment may be
carried out both in the steady-state regime of opera-
tion of the model and with the intermittent input of
raw material. In the first case the quantities gg are
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determined directly from Eq. (5), while in the second
case approximate of graphical methods may be ap-
plied to solve Eq. (4) with respect to .

We will derive a similarity criterion for modeling
from the probable value of the product g At.

The probability that a particle will drop may be
represented as

a, At = PP,

where P, is the probability of the particle appearing
in the throat region during a time At (for small At,
At P, = At/ty , where t; is the time during which a
particle moves in an "orbit" inside the reactor); P,
is the probability of a particle dropping under the
conditions existing in the throat region.

We obtain an expression for the probability P,, by
processing the appropriate transformed equations of
motion of a particle in the reactor, under a self-
similar regime of operation (usually observed in equip-
ment of this kind):

P, = AtV gir REE)
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The probability P, is determined solely by the
relation between the forces acting on the particle at
the time at which it is located in the throat, i.e., the
quantities ~ d® (p — pp) and ~ d?£p'w?,

Here w is the instantaneous velocity of the stream
at the point under examination (the absolute velocity
of a particle in the throat region is very small).

The velocity w is a stochastic quantity, the dis-
tribution of which may be expressed in the general
case as a function of wy,—mean velocity in the throat
[8].

The particle may drop when w < wer, where wer
is determined from the relation

4dpg = 3Epywy; .
Then
Py= P (@ = we) = ¢, (Fr; B).
Finally, we obtain
A=a, Vg =018y, tgys hire Fry B ©). (10)

In deriving Eqgs. (9) and (10), it was assumed, for
definiteness, that the gas density varies over the
height of the reactor according to a linear law:

o (s)y=pu+0s, 0:Ts<h

The criterial Eq. (10) is simplified considerably if
we neglect the influence of this change of gas density
on the hydrodynamics of the process, while retaining
the gecometrice similiarty of shape of the model and the
working equipment. We then obtain

A= m,(Fr; B).

From model experiments the following formula* was ob-

tained for the determination of the parameter A= a} A g:

*For this equipment the maximum permissible value
was 3~ 0.035.
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A= 10" Fr>°p"®

for 100 < Fr « 250; 10 < B < 35. (11)

Here a certain difference in the reactors proved to
be important. In Eq. (11) we took the reactor height
h as a characteristic dimension; the characteristic
velocity is the mean velocity of the stream in the cor-
responding throat.

The residence time of particles in the reactor, as
calculated using Eq. (11), is in satisfactory agree-
ment with the value determined experimentally on a
hot model of the equipment.

The equipment investigated was designed for pro-
cessing clay to form fireclay. The quality of the
firing of the particles is characterized by their water
absorption. By determining the water absorption as
a function of the temperature to which the particles
were heated [9], which was found according to the
method described, we also obtained satisfactory
agreement between the calculated and the experimen-
tally determined quantities both as regardsthe quality
of fire-clay obtained, and as regards the velocities
and temperatures present to secure this quality.

The above approach to the study of operation of
equipment of the air-counterflow type may be used
for investigating other systems with through disperse
streams (fof example, equipment with opposing jets
[10]), in which a substantial role is played by the
stochastic nature of the residence time of the mate~
tial being processed in the reactors of the system.

NOTATION

g is the weight characteristic of particle fraction;
gy is the weight of maximum fraction; n is the number
of reactors; t, T is the time; 7, is the mean time; ak
ckare the characteristics describing escape and ejec-
tionof particles; d,p, v, S, T are the diameter, material
density, volume, surface area, and temperature of
particles; V is the reactor volume; F, is the fract-
ional input rate; F is the total (particle number) in-
put rate; Q is the mass input rate; u, c,E'Ois the
temperature, specific heat, and density of gas; w, wy,,
Wy are the instantaneous, mean, and critical velocity
of stream; « is the heat transfer coefficient; vy, v,
are the opening angles of the divergent and convergent
sections of the reactors; r is the throat radius;

h is the reactor height; h is the height of one of the
cones making up the reactor; £ is the resistance
coefficient; g is the acceleration due to gravity; B is
the volume concentration; s is the height coordinate
of reactor; Fr = w¥/gr, B = pd/p'yr,C =br/p', A=
=g (r/g)!/? are similarity criteria; b is a coefficient.
Subscripts: k refers to the reactor, i to the particle.
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